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Diffusion, P1, and Other Approximate Forms of Radiation Transport

Gordon L. Olson,† Lawrence H. Auer, and Michael L. Hall

Transport Methods Group, Los Alamos National Laboratory,

P. O. Box 1663, MS D409, Los Alamos, NM 87545, U.S.A.

Abstract – Full transport solutions of time dependent problems can be

computationally very expensive. Therefore, considerable effort has been devoted to

developing approximate solution techniques that are much faster computationally and

yet are accurate enough for a particular application. Many of these approximate

solutions have been used in isolated problems and have not been compared to each

other. This paper presents two test problems which test and compare several

approximate transport techniques. In addition to the diffusion and P1 approximations,

we will test several different flux-limited diffusion theories and variable Eddington

factor closures. For completeness, we will show some variations that have not yet

appeared in the literature that have some interesting consequences. For example, we

have found a trivial way to modify the P1 equations to get the correct propagation

velocity of a radiation front in the optically thin limit without modifying the accuracy

of the solution in the optically thick limit. Also, we will demonstrate nonphysical

behavior in some published techniques.

1.  INTRODUCTION

Many approximate transport techniques have not been adequately tested by making comparisons

to analytic solutions. Su and Olson1 have presented time-dependent non-equilibrium, two

temperature, analytic benchmark diffusion and transport solutions that are very useful for testing

purposes, even though the test problem assumes a constant opacity. This paper introduces a

related ideal gas problem that assumes the opacity varies inversely with the cube of the

temperature and therefore does not have an analytic solution. These two test problems will be

used to test and compare several approximate transport techniques.

                                                
† To whom all correspondence should be addressed.
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The next section presents the equations for several different approximate transport solution

techniques. Then in the following two sections these methods are applied to the constant opacity

problem of Su and Olson1 and a variable opacity test problem. Some concluding remarks are in

the last section.

2. EQUATIONS  FOR  APPROXIMATE  TRANSPORT  MODELS

For simplicity, we will show the equations for radiation transport in only one dimension. All

of the techniques discussed here can be generalized to multi-dimensions. The equation for one-

dimensional, time-dependent grey transport is:
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where I is the specific intensity, c is the speed of light, t is the time, z is the spatial coordinate, µ

is the angle cosine relative to the z axis, κ  is the absorption opacity, σ  is the scattering opacity,

χ κ σ= +  is the total opacity, B is blackbody radiation at the local material temperature, T, a is

the radiation constant, and E is the radiation energy density. The notation used here follows

astrophysical conventions. For more background information and for more details about the

physics of transport, see Mihalas2 for an astrophysical viewpoint or Pomraning3 or Lewis and

Miller4 for a nuclear engineering viewpoint.

The first three angular moments of I are defined as:
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Where E is the energy density, F is the flux of radiation, and P is the radiation pressure. The

zeroth-moment of Eq. (1) is obtained by integrating it over all angles:
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Equation (3) is referred to as the zeroth-moment equation or the energy balance equation.

The first-moment of Eq. (1) is found by multiplying it by µ  and then integrating it over all

angles to get:
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This equation is the first-moment equation or the momentum balance equation.

Given a material energy balance equation to determine T, Equations (3) and (4) have three

unknowns: E, F, and P. When dealing with the moments of the transport equation, there is
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always one more unknown than there are equations. This is sometimes referred to as the closure

problem. One needs more information. Different approximation techniques for closing this

system of equations are presented in the next few paragraphs. All methods use the same

unmodified energy balance equation, Eq. (3).
a) The P1 equation can be obtained by setting     P E= 1

3  in Eq. (4). This is the simplest

approximation and produces:
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This equation can also be derived by assuming     I I Iµ µ( ) = +0 1,  a first-order angular expansion
(the first-order Legendre expansion, hence the name “P1” ), and calculating the moments in Eq.
(2). Because it allows this linear dependence of the radiation on angle, Morel5 has shown that in
the thick diffusion limit, the P1 equation has the same zeroth- and first-order expansions as the
transport equation. Therefore, the expected behavior of a P1 solution near the diffusion limit
should be reasonably accurate. The main physical disadvantage of the P1 equation is that in the
optically thin limit, with streaming radiation, the propagation velocity is     c c3 0 577= .  rather
than the correct value of c. This defect will be corrected in subsection (c).

b) The diffusion equation can be obtained by dropping the time derivative of the flux in the
P1 equation to get:
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Morel5 has shown that in the diffusion limit this equation is also accurate to first order.

Therefore, near the diffusion limit this equation and P1 should have comparable accuracy.

However, in the optically thin limit, this equation has an infinite propagation velocity.

Subsection (e) corrects this defect.

c) Since the P1 equation in the optically thin limit propagates information too slowly and the

diffusion equation propagates it too fast, it seems plausible that one should average these two

equations in such a way as to get the correct velocity. It turns out that adding the P1 equation

with a weight of one third to the diffusion equation with a weight of two thirds gives the correct

propagation velocity. This equation will be called the     P1 3/  equation and is given by:
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Morel5 has done the diffusion-limit analysis for this equation and found that it has characteristics

identical to the P1 equation. The factor of one third on the time derivative has corrected the
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optically thin velocity without decreasing the solution’s accuracy in the thick limit. Simmons and

Mihalas6 have found that near the optically thin limit, where there is approximately wave-like

propagation, the factor of one-third will cause the wave attenuation to be larger than it should be

by a factor of two. However, since the attenuation is small near the wave limit, an error in the

attenuation is not as serious as an error in the propagation velocity. It appears that this factor of

one third has provided significant gains without losing anything from the P1 solution. To our

knowledge, Equation (7) has not appeared anywhere in the literature.

d) The variable Eddington factor (VEF) equation is given by:
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where f = P/E. The full allowed range for f is 0 ≤ f ≤ 1. If a transport calculation is done to

calculate I and its moments in Eq. (2), then f is an accurate representation of the radiation field

and the solution of Eq. (8) is an accurate solution of the transport equation. An approximate

closure assumes a local function for the Eddington factor. Minerbo7 has proposed such a closure

based on maximum entropy arguments that yield a radiation field of the form   I ae bµ µ( ) = . From

this expression, the Eddington factor can be calculated as a function of     ( )F cE . A simple closure

suggested by Kershaw8 is     f F cE= +1
3

2
3

2( ) . All of the proposed local closures interpolate

monotonically between the diffusion limit where f = 1/3 and the streaming limit where f = 1.

Unfortunately, they therefore exclude an important class of problems where     f < 1
3 . More

seriously, all local closures cause Eq. (8) to be nonlinear; therefore, feedback in the numerical

solution can cause nonphysical radiation “shocks.” While the radiation pressure, fE , is

continuous, f and E individually can be discontinuous. By averaging f in time and space, these

discontinuities can be usually be reduced to oscillations in the solution for E. The good news is

that with nonlocal VEF’s, Equation (8) is accurate over the full range of optical depths. With

local VEF’s, Equation (8) is potentially accurate, but there are no guarantees.

e) The infinite propagation velocity of the diffusion approximation can be corrected by using

a flux limited diffusion coefficient:
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where D is the diffusion coefficient and the form shown here is a generic one usually called the

“sum” flux limiter. The factor δ  is an adjustable parameter that can be used to try to fit standard

test problems, but it is often left at a default value of unity. (In this paper, δ  will always be taken

as unity.) In the optically thick limit, the gradient of the energy density is small compared to the

opacity and this equation reduces to the pure diffusion equation. In the thin limit, the gradient

dominates the denominator of D and the flow of radiation is limited to the speed of light, as

desired. Unfortunately, a flux-limited diffusion coefficient makes the diffusion equation

nonlinear in E. Also, Morel5 has shown that Eq. (9) is only zeroth order accurate in the thick

limit. Therefore,     I Iµ( ) = 0 , an isotropic radiation field, is the best approximation that flux-

limited diffusion can make in this limit. As soon as one is slightly away from the thick limit, the

solution of Eq. (9) will differ from the transport solution. Because of the structure of the flux

limiter, Eq. (9) gets the correct asymptotic limit in the optically thin limit. However, in the

process of correcting the thin limit, an order of accuracy in the thick limit has been sacrificed.

f) Larsen9 has suggested a modified form for the flux-limited diffusion coefficient that retains

first order accuracy in the thick limit:
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In the thick limit with n = 2, the gradient term is now small quadratically; therefore, it does not

disturb the linear accuracy of the diffusion solution. With n > 2, the gradient term is even

smaller.

A related flux limiter is the maximum or “max”:
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This form also retains the linear accuracy of the solution in the thick limit if the opacity term is

larger than the gradient term. Unfortunately, this flux limiter has discontinuous derivatives. For

large values of n, Equation (10) approximates Eq. (11) while retaining continuous derivatives.

g) Levermore and Pomraning10 (L-P) derived a flux limiter from the transport equation that

exactly solved a particular transport problem. They defined some auxiliary functions in addition

to a flux limiter:
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where ω  is an albedo, R is a scaled radiation energy density gradient, and   λ R( ) is a function that

comes out of their analysis. In the test problems below, this flux limiter will exhibit some

nonphysical behavior. Zimmerman11 suggested the following simplification:
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 This variation gives much better solutions to the test problems examined here.

h) One way to get rid of the artificial shocks when using local VEF’s is to take the Eddington

factor outside of the derivative:
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This equation looks like the P1 equation except that the factor of one third has been made a

variable; therefore, it will be called variable P 1  or VP1. A lower case d has been used to

distinguish this coefficient from the diffusion coefficient and the Eddington factor. Note that d

has the same range as f in one dimension: 0 ≤ d ≤ 1. Therefore, the same local approximations

suggested for f can, potentially, be used for d. However, it is important to note that the only

value of d that will cause Eq. (14) to generate an accurate transport solution in a general problem

is to use

  
d

P z
E z

P
E
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∂

. (15)

Numerically, this ratio of derivatives is much more difficult to calculate than the ratio of

moments used to define the Eddington factor. While E is positive, its spatial derivative can

change signs causing Eq. (15) to be potentially ill defined when   ∂ ∂E z  is near zero. Also, d has

more spatial structure than f. In our numerical tests, a computational grid that well resolves f in a

characteristic ray solution is too coarse to adequately resolve d. Therefore, the use of Eq. (15)

does not appear to be practical. To our knowledge, Equation (14) and its usage has not been

published anywhere in the literature. It is presented here as part of a large family of

approximations to the transport equation.

i) For completeness, we present a variation on the previous equations that we don’t

recommend:
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where   
1
3 1≤ ≤β . Setting   β = 1

3  recovers the P1/3 equation shown in Eq. (7). However, by making

β a variable dependent on the solution, one can attempt to get a more accurate solution. For

example,     β = − ( )1 2
3

2
F cE  interpolates between the P1 and P1/3 equations. Unfortunately, this

type of local closure makes Eq. (16) nonlinear and can cause numerical instabilities. While the

added flexibility of making β a function of E and F may make the numerical solution more

accurate in some instances, in general the improvement over Eq. (7) may not be worth the effort.

j) Olson and Weaver12 examined fourth moment closures by coupling the next two higher

moment equations to Eqs. (3) and (4). Because the moments of the radiation field are a

converging sequence, the solution is less sensitive to the details of how the closure is done when

one works with the fourth moment. In one dimension, the four moment equations can be solved

simultaneously as two second-order coupled “diffusion-like” equations. Although the results

aren’t shown here, P3 and related nonlinear closures at the fourth moment give excellent

solutions to the problems in the next two sections. P3-type solutions are naturally more accurate

and they extend to problems where the Eddington factor is less than one third. Rather than

doing considerable work on sophisticated approximate second moment closures, it may be better

to use higher order methods from the beginning.

summary) Numerically, the diffusion approximations in (b), (e), (f), and (g) are the simplest.

The other approximations include the time derivative of the flux; therefore, the value of F must

be retained from the previous time step. Using a staggered mesh in one dimension, where the

energy densities are at cell centers and fluxes are on cell boundaries, this is trivial. In multi-

dimensions, there are several cell faces for each cell center. Therefore, the non-diffusion

techniques require more computer storage. However, these fluxes from the previous time step

contain important physical information that should improve the accuracy of the non-diffusion

solutions.

The methods that keep the flux derivative term in Eq. (4) have a slight numerical advantage

when solving the system of equations representing the finite difference equations. The time step

increases the effective opacity of a cell by     c t∆( )−1
. In optically thin parts of a problem or when the

time step is very small, this will decrease the magnitude of the off diagonal elements of the

matrix, thus increasing the diagonal dominance. This change will usually cause iterative solutions

of the system of equations to converge slightly faster.

It is instructive to compare the different flux limiters using R, the scaled energy gradient

introduced in Eq. (13). Figure 1 shows five different models for flux limiting. A horizontal line
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at a value of one third would represent the case of no flux limiting. The simple sum flux limiter

[Eq. (9)] has a value that is too small and limits the flow of radiation too much. The maximum

limiter is clearly the least restrictive and will allow the most radiation to flow. Larsen’s limiter

with n = 4 preserves much of the character of the maximum limiter without having a

discontinuous derivative.

A surprising fact shown by Fig. 1 is that Larsen’s flux limiter with n = 2 and the simplified

Levermore-Pomraning flux limiter with   ω = 1 are almost identical. Derived and proposed from

very different points of view, the functional forms are very close. In the test problems of the next

two sections, these two flux limiters give nearly identical answers. Since the Larsen limiter

contains a simple square root function rather than a hyperbolic cotangent, we recommend using

Larsen’s limiter rather than the simplified Levermore-Pomraning flux limiter. The full L-P

limiter in Eq. (12) is too complex to compare to the other flux limiters in Fig. 1.

3.  CONSTANT  OPACITY  TEST  PROBLEM

Su and Olson1 defined a basic non-equilibrium radiative transfer problem consisting of an

initially cold, homogeneous, infinite, and isotropically scattering medium with an internal

radiation source turned on at time zero. While they presented benchmark solutions for problems

that include scattering, here we will compare numerical solutions to their pure absorption

benchmark. Equation (1) must be modified to include an isotropic radiation source, S:
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Also, an equation describing the exchange of energy between the radiation and material must be

specified:
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where   CV  is the heat capacity of the material, assumed to be proportional to the cube of the

material temperature,     C TV = α 3. This assumption is based on mathematical convenience rather

than physical correctness. Inserting this assumption into Eq. (18) and rearranging gives an

equation that is linear in     T 4 :
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By also assuming that the opacity was a constant, Su and Olson1 were able to obtain a closed

form solution for scaled variables of the material temperature to the fourth power and radiation

energy density:
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where TH is a Hohlraum or reference temperature and Tr is the radiation temperature. Using

these new variables and introducing a scaled time variable, one can rewrite the material energy

balance equation as:
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Rewriting Eq. (17) with these scaled variables and a scaled radiation intensity gives:
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The zeroth- and first-angular moments of this scaled equation are:
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Equations (21)-(26) simplify significantly if one chooses     α = 4a , i.e.,     C aTV = 4 3, and   κ = 1.

With these choices the time variable becomes   τ = ct . The tables for the analytic solution in space

and time given by Su and Olson1 use these values and

    

ˆ ˆ .S
S

aT
z ct S

H

≡ = ≤ ≤ =
4

1
2 10 01  for    and  ,   elsewhere  (28)

At the midplane, z = 0, a symmetry boundary condition is applied so that the calculational space

is     0 30≤ ≤z . The radiation does not travel from the source region to the boundary at z = 30 in

the time of interest. At z = 30 we use a fixed temperature boundary condition of

    θ 30 30 10 10, ˆ ,t E t( ) = ( ) = − , which is also the initial value,     θ x E x, ˆ ,0 0 10 10( ) = ( ) = − .
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Figures 2 and 3 compare diffusion, P1, and a transport Eddington factor solution to the

benchmark solution of Su and Olson1. For the Eddington factor solution, time-dependent

solutions of Eq. (17) along rays passing through the slab were done at standard Gaussian

quadrature angles. Only eight angles were required to accurately compute the Eddington factor, f

= P/E, that was then used in the moment equations. In the figures, the variable Eddington factor

solution goes through the symbols for the analytic solution. The diffusion solution without any

flux limiter propagates radiation out ahead of the transport solution in Fig. 3, while P1 lags

behind the transport solution. Near x = 0 in Fig. 2, neither P1 nor diffusion match the transport

solution very well at ct = 3 or 10. From Fig. 3, it is clear that early in time, near a boundary layer,

P1 is significantly better than diffusion.

Figure 4 compares three different flux limited diffusion solutions to the benchmark solution.

The sum flux limiter looks good early in time but it lags significantly behind the transport

solution as it approaches the equilibrium solution at depth. The maximum flux limiter’s solution

has a noticeable bend in the solution at time ct = 1 and x =1.5. The discontinuous derivative of

the limiter is apparent at this point. Larsen’s flux limiter using n = 2 gives the best solutions at ct

= 3 and 10, and it is well behaved early in time. The Levermore-Pomraning simplified flux

limiter with the albedo set to unity gives a solution (not shown) that is just very slightly to the

left of the Larsen solution.

Figure 5 shows the P1/3 solution, a variable Eddington factor solution using Minerbo’s7

prescription for a local closure, and diffusion using the full Levermore-Pomraning10 diffusion

coefficient. The P1/3 solution tracks the position of the wave front well and gives a smooth well-

behaved answer. As discussed in the previous section, local Eddington factor closures are

numerically unstable and give a noisy solution. At ct = 10, the solution becomes smooth as it

transitions to the equilibrium diffusion solution. The Levermore-Pomraning flux limiter gives a

good solution for the early time steps, but at ct = 10, it produces a nonphysical result by allowing

energy ahead of the non-flux limited solution shown in Fig. 3.

Figure 6 presents the Eddington factors for the characteristic ray solution, shown in Figs. 2

and 3, and the Minerbo local closure of Fig. 5. On this linear plot, the noise in the local closure

looks even worse than in Fig. 5. Note that the accurate solution shows Eddington factors in the

source region are significantly below one third, while the local closure has the built in assumption

that the correct range is 1/3 ≤ f ≤ 1. This discrepancy indicates why all the approximate theories
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fit the transport solution so poorly near x = 0 in Fig. 2. None of the approximate theories allow

for f ≤ 1/3.

Figure 6 also indicates why the Levermore-Pomraning flux limiter produced a nonphysical

result. In their paper, Levermore and Pomraning,10 introduced a normalized specific intensity,

    ψ µ µz t I z t cE z t, , , , / ,( ) ≡ ( ) ( ) . Then in parts of the derivation they assumed that this normalized

specific intensity was slowly varying in space and time. This normalization removes the rapid

variation in space and time near a wave front. However, the angular dependence is also rapidly

varying near a wave front. The Eddington factor, being the ratio of the second angular moment

to the zeroth angular moment, is a good measure of the angular-dependent part of the radiation

field. Clearly from Fig. 6, near a wave front the Eddington factor is not slowly varying.

Therefore, the derivation’s assumptions break down precisely where the flux limiter is most

needed, at a wave front. This nonphysical behavior of propagating a wave front faster than the

non-flux limited solution is worse in the problem of the next section.

Figure 7 shows the results of using the methods discussed in subsections (h) and (i) and using

Levermore’s13 suggestion for a local closure for a VEF. The methods of (h) and (i) have nothing

to distinguish them from the other techniques. Several different approximations were used for d

and ω , but none of them gave significantly better results than the other methods. Levermore’s

VEF13 suffers from the same problems as Minerbo’s VEF7 shown in Fig. 5.

4.  VARIABLE  OPACITY  TEST  PROBLEM

The test problem of the previous section is useful because Su and Olson1 were able to obtain

exact solutions (to four significant digits). Unfortunately, the assumption of constant opacity is

not realistic and therefore the comparisons made in the last section can not be considered

definitive. Therefore, we propose a related problem where the opacity varies inversely with the

cube of the temperature,     κ κ κ θ= =− −
0

3
0

3 4ˆ /T , and the heat capacity is a constant. In this

problem the opacity has physically reasonable temperature dependence while the heat capacity is

that of an ideal gas. The advantage of this choice is that the material energy balance equation is

simple and will look almost identical to Eq. (22) in the previous section with a slightly redefined

time variable:

    

C

c T

T
t

E aTV

H4 0
3

4
4

κ

∂
∂

= − , or (29)

    

∂
∂

= − ≡θ
τ

θ τ
κˆ ,E

ac T
C

tH

V
where  

4 0
3

. (30)
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The transport equation and its angular moments in terms of normalized variables now must

include the nonlinear opacity:
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ˆ/F P
z

F+ = − −1

0

3 4 , where (33)

    
ε τ εκ≡ =4 3

0
aT
C

ctH

V
, and . (34)

These equations are clearly nonlinear because of the variable opacity; therefore, the technique

used by Su and Olson to get an analytic solution is not applicable. However, as in the previous

section we choose   ε ≡ 1 (    C aTV H= 4 3 ) and   κ 0 1= . Then time is scaled by the speed of light,

  τ = ct . If one prefers to use   κ 0 1≠ , then one can introduce a scaled spatial variable,     x z≡ κ 0 , and

interpret the results below in terms of this scaled variable. Because the opacity was specified in

normalized temperature units, one must also use     TH ≡ 1 in order that everyone agrees what the

opacity function is.

Instead of an internal source term, for this problem we will apply an isotropic radiation field

incident on the slab’s surface at z = 0:

    
I t B T

ac
T IHµ

π
µ τ

π
, , ˆ , ,0

4
0

1
4

4( ) = ( ) = ( ) =  or  . (35)

In order to apply this type of boundary condition to the moment equations, we need to relate the
intensity self-consistently to its moments. If one assumes     I z t I z t I z t, , , ,µ µ( ) = ( ) + ( )0 1  and

integrates the zeroth- and first-angular moments of this linear expansion, then     I 0  and     I 1 can be

related to E and F:

    
I z t

cE z t F z t
, ,

, ,
µ

π
µ

π
( ) = ( ) + ( )

4
3

4
. (36)

Then integrating the boundary condition over the half range in angle gives:

    

F t B T d B T
ac

T
c

E

cE t F t
d

c
E t F t

inc
H H0 2

4 4

2
0

4
3 0

4 4
0

1
2

0

0

1 4

0

1

,

, ,
, , .

( ) = ( ) = ( ) = =

= ( ) + ( )



 = ( ) + ( )

∫

∫

π µ µ π

π
π

µ
π

µ µ

(37)
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This is usually referred to as a Marshak boundary condition. It is used by solving for F and using

it in the flux continuity equation for one side of the first cell in the slab:

    
F t F t

c
E tinc0 2 0

2
0, , ,( ) = ( ) − ( ), or (38)

    
ˆ , ˆ ,F E0

1
2

1
2

0τ τ( ) = − ( ). (39)

The initial condition for the cold slab is to use     
ˆ , ( , )E x x0 0 10 5( ) = = −θ  or     

ˆ ( , ) .T z 0 10 1 25= −

  = 0 05623.
The normalized Equations (32) and (33) are relatively simple when one chooses   ε ≡ 1 and

  κ 0 1≡ . These equations can be related to real codes with non-normalized variables by taking an

ideal gas as an example. For an ideal gas, the heat capacity is given by the density times the

specific heat, which is known in terms of atomic constants:

    
C c

k
mV V= =ρ
ρ3

2
, (40)

where m is the mass of a hydrogen atom and k is the Boltzmann constant. In order to get   ε ≡ 1,

one must have

    
T

C
a

k
maH

V3

4
3
8

= = ρ
. (41)

Therefore, in a high temperature plasma code that uses “temperatures” in keV, TH = 1 keV, and

the appropriate mass density is 0.38214 g cm-3. This is a little cooler and less dense than at our

sun’s center.

In other papers, some authors have studied a problem nearly identical to the one proposed in

this section; however, they set     κ 0 1= = =c a . Such a choice is reasonable for idealized test codes;

however, it is difficult for codes with real physics to make such arbitrary changes. Therefore, it is

hoped that the problem as scaled here will be easier for physics codes to calculate.

The finite difference forms of Eqs. (25) and (26) in the previous section and Eqs. (32) and

(33) in this section have E, f, and P at cell centers and F, D, and d on cell edges. θ  in Eqs. (30)

and (32) is evaluated at the cell center temperature, while θ  in Eq. (33) is evaluated at the cell

edge temperature which is taken to be the average of the two neighboring cell centers. Similarly,

the diffusion coefficients, D , are evaluated at the cell edge temperatures. Because of the

nonlinearity of the opacities it is important to average the temperatures rather than average the

opacities. Also, it is necessary either to iterate for the solution at the new time step with implicit
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opacities or to use a very small time step. Otherwise the numerical solution will drift away from

the correct spatially and temporally resolved solution.

  Figure 8 shows the radiation and material temperatures as the Marshak wave penetrates into

the slab. Because of the temperature-dependent opacity, the front of the wave stays sharp, it does

not spread out significantly as it propagates.

 Figure 9 compares many different methods at one time (ct = 30) with a greatly expanded

spatial scale. The “exact” solution is the second curve from the left. While there is no analytic

solution to this nonlinear problem, this solution is the converged answer arrived at with two

completely different methods: characteristic rays calculating VEF’s and PN from the Spartan

package by Michael Hall. The two methods converged with six angles for calculating the

Eddington factor and at P5, respectively. This problem does not require high angle quadrature.

As mentioned earlier, P3 gives a quite adequate solution.

From Fig. 9, it is clear that the sum flux limiter slows down the wave propagation too much.

The L-P flux limiter is the rightmost curve and is significantly out ahead of the nonflux-limited

solution. As discussed earlier, the approximations made in deriving this limiter are not correct

near a sharp wave front. The solution with Larsen’s n = 2 flux limiter is the one closest to the

transport solution in this problem. The solution with the simplified L-P limiter with   ω = 1 (not

shown) would be just slightly to the left of the curve for Larsen’s limiter. The three curves

grouped very close together are P1, diffusion, and Minerbo’s local VEF. In this problem, P1

propagates only slightly slower than diffusion, the difference is almost negligible. The local VEF

solution is just below the P1 solution until right at the wave front where it has a bend and then

goes in front of the diffusion solution. The large opacity changes have dampened the oscillations

that occurred in the local VEF solutions of the constant opacity problem. Not shown is the P1/3

solution because it lies between the P1 and diffusion solutions. The “max” flux limiter solution is

also not shown as it is identical to the nonflux-limited diffusion solution.

Although Larsen’s n = 2 flux limiter gives the solution closest to transport in this problem,

that does not mean that it is the best in any other problem. This limiter gives a smooth transition

from diffusion to the streaming limits without reducing the accuracy of the diffusion limit. That

is how it was chosen. It has no sophistication or transport knowledge. In the constant opacity

problem, this limiter and the P1/3 solution are almost identical. We prefer the P1/3 method as

more general purpose because it doesn’t throw away the flux derivative term and then introduce

an ad hoc limiter to repair the damage done by throwing away some physics.
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In passing, we draw the reader’s attention to the fact that, even though the wave front is deep

into the material and the optical depth ahead of the wave front is several thousand, there are still

important differences between diffusion and transport. Simply being optically thick is not

sufficient to assure the validity of the diffusion limit. The sharp edge at the front of the wave acts

as an internal boundary, the structure of which neither diffusion nor P1 can accurately model.

V.  CONCLUSIONS

This paper has compared several approximate transport methods to each other and to full

transport in two test problems. Flux-limited diffusion using the simple sum flux limiter of Eq.

(9) is perhaps one of the most common approximations and it is also one of the least accurate.

This limiter restricts the flow of radiation too much and Morel’s5 analysis shows that it results in

a solution that is only zeroth order accurate in the diffusion limit. The only reason to use this

limiter is for a crude estimation of the size of transport effects. If a solution with the sum limiter

differs drastically from one using the better limiters, then a full transport calculation may differ

significantly from any of the diffusion solutions.

The Levermore-Pomraning flux limiter should not be used for the class of problems

presented here. If the problem being solved is very similar to the problem for which the L-P

limiter gives the exact solution,10 then it is an appropriate choice. The nonphysical behavior of

pushing radiation out ahead of the nonflux-limited solution makes this limiter unreliable for

some classes of problems. The simplified form using   ω = 1 gives better results, but it is so close

to Larsen’s n = 2 limiter, that it doesn’t need to be used.

Of the flux-limited diffusion schemes, Larsen’s n = 2 limiter is the recommended choice. It is

the simplest limiter that has all the desired properties. The solution near the diffusion limit

agrees with the transport solution to first order when n is greater than or equal to 2. By compar-

ing the different solutions using n = 1, 2, and 4, one can    perhaps   crudely estimate whether a full

transport calculation is required. If all three results are identical, transport may be unnecessary.

The P1/3 method is a corrected form of P1 that has the correct propagation velocity in the

optically thin limit. Unlike flux-limited diffusion, this is a linear closure that does not throw

away the flux derivative term in the momentum balance equation. It should be pointed out that

flux-limited diffusion couples the wrong momentum to the material that the radiation is flowing

through. Therefore, P1/3 is recommended over any of the flux-limited diffusion theories as a

general-purpose choice.
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Local closures using variable Eddington factors (VEF) are not recommended. This method

gives non-smooth solutions that aren’t any better than the other techniques.

Nonlocal VEFs can give transport accurate results if the angle and spatial zoning are

converged. These solutions were presented here as the transport solutions the approximate

theories were striving to match. A potentially fruitful area of future research is to determine how

to maximize the accuracy of nonlocal VEFs while minimizing the computational work in multi-

dimensional geometries.

It must be emphasized that the thorough testing of new closures and approximate theories is

absolutely essential. While not exhaustive, the two problems used here are complementary in

how they test proposed algorithms and the codes written with those algorithms. The first one

tests optically thin and boundary layer behavior. The temperature dependent opacity in the

second problem provides a stringent test of zoning and time step control in addition to transport

effects. Whenever possible, one should do a transport calculation of a realistic and relevant

problem and compare the approximate solutions to the transport answer.
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Figure Captions:

Figure 1.  The scaled diffusion coefficient is shown as a function of a scaled energy gradient. The

legend listing the models from top to bottom describes the curves from left to right. L-P refers to

the Levermore-Pomraning10 flux limiter.

Figure 2.  The analytic benchmark solution of Su and Olson1 (symbols) is compared to diffusion,

P1, and a characteristics ray Eddington factor solutions on a linear scale.

Figure 3.  The same as Fig. 2 except is on a logarithmic scale.

Figure 4.  The same as Fig. 3 except is for three diffusion flux limiters: the sum, maximum, and

Larsen (with n = 2) limiters.

Figure 5.  The same as Fig. 3 except is for P1/3, Minerbo7 local variable Eddington factor, and

Levermore-Pomraning10 flux-limited diffusion solutions.

Figure 6. The variable Eddington factors for the characteristic ray solution (solid lines) and for

the Minerbo local approximate closure (dashed lines).

Figure 7.  The same as Fig. 3 except is for Levermore13 variable Eddington factor and the

methods in subsections (h) and (i).

Figure 8.  The normalized radiation (solid lines) and material (dashed lines) temperatures are

shown as a function of space at different times for the temperature-dependent opacity problem.

Figure 9.  The normalized radiation temperature is shown as a function of space at one time for

several different approximate transport models. The models listed top to bottom are in the left to

right order at Tr = 0.2.
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Figure 1.  The scaled diffusion coefficient is shown as a function of a scaled
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Figure 3.  The same as Fig. 2 except on a logarithmic  scale.
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Figure 4.  The same as Fig. 3 except is for three diffusion flux limiters: the sum,
maximum, and Larsen (with n = 2) limiters.
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Figure 5.  The same as Fig. 3 except is for P1/3, Minerbo7 local variable Eddington

factor, and  Levermore-Pomraning10 flux-limited diffusion solutions.
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lines) and for the Minerbo local approximate closure (dashed lines).
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the methods in subsections (h) and (i).
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